Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 355: 141763, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522672

RESUMO

The fluoroquinolones ciprofloxacin, danofloxacin, enoxacin, levofloxacin and lomefloxacin, occur in water bodies worldwide and therefore pose a threat to the aquatic environment. Advanced purification procedures, such as electrochemical oxidation, may act as a remedy since they contribute to eliminating contaminants and prevent micropollutants from entering open water bodies. By electrochemical treatment in a micro-flow reactor equipped with a boron-doped diamond (BDD) electrode, the fluoroquinolones were efficiently degraded. A total of 15 new products were identified using high-performance high-resolution chromatography coupled with high-resolution multifragmentation mass spectrometry. The ecotoxicity of the emerging transformation products was estimated through in silico quantitative structure activity relationship analysis. Almost all transformation products were predicted less ecotoxic than the initial compounds. The fluoroquinolone degradation followed three major mechanisms depending on the voltage during the electrochemical oxidation. At approximately 1 V, the reactions started with the elimination of molecular hydrogen from the piperazine moiety. At approx. 1.25 V, methyl and methylene groups were eliminated. At 1.5 V, hydroxyl radicals, generated at the BDD electrode, led to substitution at the piperazine ring. This novel finding of the three reactions depending on voltage contributes to the mechanistic understanding of electrochemical oxidation as potential remedy against fluoroquinolones in the aquatic environment.


Assuntos
Ciprofloxacina , Poluentes Químicos da Água , Ciprofloxacina/química , Levofloxacino/análise , Enoxacino/análise , Diamante/química , Fluoroquinolonas/análise , Piperazina , Oxirredução , Eletrodos , Água , Poluentes Químicos da Água/análise
2.
Environ Sci Pollut Res Int ; 31(9): 13442-13454, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38252206

RESUMO

The European Union requires environmental monitoring of the antidepressant drug venlafaxine. Advanced oxidation processes provide a remedy against the spread of micropollutants. In this study, the photoinduced and electrochemical decompositions of venlafaxine were investigated in terms of mechanism and efficacy using high-performance liquid chromatography coupled to high-resolution multifragmentation mass spectrometry. Kinetic analysis, structure elucidation, matrix variation, and radical scavenging indicated the dominance of a hydroxyl-mediated indirect mechanism during photodegradation and hydroxyl and direct electrochemical oxidation for electrochemical degradation. Oxidants, sulfate, and chloride ions acted as accelerants, which reduced venlafaxine half-lives from 62 to 25 min. Humic acid decelerated degradation during ultra-violet irradiation up to 50%, but accelerated during electrochemical oxidation up to 56%. In silico quantitative structure activity relationship analysis predicted decreased environmental hazard after advanced oxidation process treatment. In general, photoirradiation proved more efficient due to faster decomposition and slightly less toxic transformation products. Yet, matrix effects would have to be carefully evaluated when potential applications as a fourth purification stage were to be considered.


Assuntos
Oxidantes , Poluentes Químicos da Água , Cloridrato de Venlafaxina/análise , Cinética , Oxidantes/química , Oxirredução , Radical Hidroxila/química , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA